1+x^2分之一的不定积分是什么?
1+x^2分之一的不定积分arctanx+c。
常用导数公式:
1、y=c(c为常数) y'=0。
2、y=x^n y'=nx^(n-1)。
3、y=a^x y'=a^xlna,y=e^x y'=e^x。
4、y=logax y'=logae/x,y=lnx y'=1/x。
5、y=sinx y'=cosx。
6、y=cosx y'=-sinx。
7、y=tanx y'=1/cos^2x。
8、y=cotx y'=-1/sin^2x。
9、y=arcsinx y'=1/√1-x^2。
10、y=arccosx y'=-1/√1-x^2。
11、y=arctanx y'=1/1+x^2。
12、y=arccotx y'=-1/1+x^2。
根据牛顿-莱布尼茨公式,许多函数的定积分的计算就可以简便地通过求不定积分来进行。这里要注意不定积分与定积分之间的关系:定积分是一个数,而不定积分是一个表达式,它们仅仅是数学上有一个计算关系。
一个函数,可以存在不定积分,而不存在定积分,也可以存在定积分,而没有不定积分。连续函数,一定存在定积分和不定积分;若在有限区间[a,b]上只有有限个间断点且函数有界,则定积分存在;若有跳跃、可去、无穷间断点,则原函数一定不存在,即不定积分一定不存在。