如图,在边长为2的菱形ABCD中,∠A=120°,E,F分别是边AB和BC的中点,EP⊥CD于点P,S△EFP=?
3个回答
展开全部
延长EF交DC的延长线于H点.
∵在菱形ABCD中,∠A=100°,E,F分别是边AB和BC的中点,
∴∠B=80°,BE=BF.
∴∠BEF=(180°-80°)÷2=50°.
∵AB∥DC,∴∠FHC=∠BEF=50°.
又∵BF=FC,∠B=∠FCH,
∴△BEF≌△CHF.
∴EF=FH.
∵EP⊥DC,
∴∠EPH=90°.
∴FP=FH,则∠FPC=∠FHP=∠BEF=50°.
故选C.
∵在菱形ABCD中,∠A=100°,E,F分别是边AB和BC的中点,
∴∠B=80°,BE=BF.
∴∠BEF=(180°-80°)÷2=50°.
∵AB∥DC,∴∠FHC=∠BEF=50°.
又∵BF=FC,∠B=∠FCH,
∴△BEF≌△CHF.
∴EF=FH.
∵EP⊥DC,
∴∠EPH=90°.
∴FP=FH,则∠FPC=∠FHP=∠BEF=50°.
故选C.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询