已知a,b属于正实数,a^2+b^2/2=1,则a(1+b^2)^1/2的最大值

如题... 如题 展开
 我来答
茹翊神谕者

2023-02-12 · TA获得超过2.5万个赞
知道大有可为答主
回答量:3.6万
采纳率:76%
帮助的人:1680万
展开全部

简单分析一下,答案如图所示

平男干姗
2020-07-12 · TA获得超过1114个赞
知道小有建树答主
回答量:2011
采纳率:90%
帮助的人:9.9万
展开全部
a²+b²/2=1
2a²+b²=2
2a²+(1+b²)=3
所以3=2a²+(1+b²)>=2√[2a²*(1+b²)]
所以2√2*a√(1+b²)<=3
a√(1+b²)<=3/2√2=3√2/4
所以最大值=3√2/4
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
泰丽庹栋
2020-07-29 · TA获得超过1122个赞
知道小有建树答主
回答量:1978
采纳率:94%
帮助的人:9.7万
展开全部
已知
a^2+b^2/2=1则b^2=2-2a^2>=0

0<=a^2<=1
a根号(1+b^2)=√【a^2(1+b^2)】=√(a^2(3-2a^2))=√[-2(a^2-3/4)+9/8]

0<=a^2<=1
得a^2=3/4时,a根号(1+b^2)取最大值√(9/8)=3√2/4
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式