16题,求过程,谢!
1个回答
展开全部
a(n+1)=nan/[n+1+(n²+n)an]
1/a(n+1)=[n+1+(n²+n)an]/(nan)=(n+1)[(1+nan)/(nan)]
1/[(n+1)a(n+1)]=1/(nan) +1
1/[(n+1)a(n+1)] -1/(nan)=1,为定值
1/(1·a1)=1/(1·½)=2
数列{1/(nan)}是以2为首项,1为公差的等差数列
1/(nan)=2+1·(n-1)=n+1
an=1/[n(n+1)]=1/n -1/(n+1)
Sn=a1+a2+...+an
=1/1- 1/2 +1/2 -1/3+...+1/n -1/(n+1)
=1- 1/(n+1)
=n/(n+1)
n/(n+1)恒>0
令n/(n+1)<2015/2017
2n<2015
n<1007.5
n为正整数,n≤1007
数列{Sn}落入区间(0,2015/2017)内的项数为1007
1/a(n+1)=[n+1+(n²+n)an]/(nan)=(n+1)[(1+nan)/(nan)]
1/[(n+1)a(n+1)]=1/(nan) +1
1/[(n+1)a(n+1)] -1/(nan)=1,为定值
1/(1·a1)=1/(1·½)=2
数列{1/(nan)}是以2为首项,1为公差的等差数列
1/(nan)=2+1·(n-1)=n+1
an=1/[n(n+1)]=1/n -1/(n+1)
Sn=a1+a2+...+an
=1/1- 1/2 +1/2 -1/3+...+1/n -1/(n+1)
=1- 1/(n+1)
=n/(n+1)
n/(n+1)恒>0
令n/(n+1)<2015/2017
2n<2015
n<1007.5
n为正整数,n≤1007
数列{Sn}落入区间(0,2015/2017)内的项数为1007
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询