设函数f(x)的定义域为R,且满足下列两个条件:(1)存在x1≠x2,使f(x1)≠f(x2);(2)对任意x∈R,有f(x+y)=
设函数f(x)的定义域为R,且满足下列两个条件:(1)存在x1≠x2,使f(x1)≠f(x2);(2)对任意x∈R,有f(x+y)=f(x)*f(y),(1)求f(0),...
设函数f(x)的定义域为R,且满足下列两个条件:(1)存在x1≠x2,使f(x1)≠f(x2);(2)对任意x∈R,有f(x+y)=f(x)*f(y),(1)求f(0),(2)求证:对任意x,y∈R,f(x)>0恒成立
展开
2个回答
展开全部
解:(1)令x=0,y≠0,则f(x+y)=f(y)=f(0)*f(y),所以f(0)=1。
(2)令x=y,则f(x+y)=f(2x)=f(x)^2>=0,
又因为存在x1≠x2,使f(x1)≠f(x2)且f(0)=1,
所以对任意x,y∈R,f(x)>0恒成立。
(2)令x=y,则f(x+y)=f(2x)=f(x)^2>=0,
又因为存在x1≠x2,使f(x1)≠f(x2)且f(0)=1,
所以对任意x,y∈R,f(x)>0恒成立。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询