什么是正态分布

 我来答
SPSSAU
2023-11-14 · 百度认证:SPSSAU官方账号,优质教育领域创作者
SPSSAU
SPSSAU,也称"在线SPSS",一款网页版数据科学算法平台系统,提供"拖拽点一下"的极致体验和智能化分析结果。
向TA提问
展开全部

正态分布在统计学中是一个很重要的概率分布类型,哪怕是在实际生活中也有着重要的指导与应用作用,比如:某学校学生的成绩分布,男子身高、工厂生产产品的尺寸等等。同时,正态分布也是许多检验的基础,在实际使用统计分析时,人们总是乐于正态检验。比如F检验以及t检验等在总体不是正态分布时一般没有意义。所以检验数据是否服从正态分布一直都是统计学比较重要的问题。所以本篇文章分别进行对检验正态分布的方法进行说明。

检验数据是否服从正态分布的方法有很多,常用的有正态性检验(S-W检验、K-S检验),查看峰度与偏度以及图示化(直方图、p-p/q-q图)等。正态性检验顾名思义判断总体是否服从正态分布的检验。它是统计判决中重要的一种特殊的拟合优度的假设检验。SPSSAU提供的正态性检验方法有三个如下:

针对三种正态性检验方法的区别如下:

SW检验一般需要样本量小于50,如果样本量大于50建议使用K-S检验,JB检验基于数据样本的偏度(统计数据分布偏斜方向和程度的度量)和峰度分析(表征概率密度分布曲线在平均值处峰值高低的特征数),一般用于大样本分析。正态性检验属于非参数检验,原假设为“样本来自的总体与正态分布无显著差异就符合正态分布”,即当p<0.05是拒绝原假设,数据不符合正态分布,p>0.05是接受原假设,数据符合正态分布。接下来进行查看

‘峰度和偏度’如何进行数据正态分布的检验。

偏度和峰度

偏度也称偏斜度,描述数据分布的偏斜程度和方向,峰度描述数据分布曲线陡峭平缓程度的统计量,理论上讲,标准正态分布偏度和峰度均为0,但现实中数据无法满足标准正态分布,因而如果峰度绝对值小于10并且偏度绝对值小于3,则说明数据虽然不是绝对正态,但基本可接受为正态分布。【参考文献:Kline R , Kline R B , Kline R . Principles and Practice of Structural Equation Modelling[J]. Journal of the American Statistical Association, 2011, 101(12).】。除此之外,还有图示化可以进行验证,比如直方图、p-p/q-q图。

图示化

除了用正态性检验和偏度和峰度的方法,还可以结合图形进行分析数据是否符合正态分布。其中包括直方图和p-p/q-q图。

直方图

如果使用直方图,直方图若呈现‘中间高,两边低,左右基本对称的钟形图’则基本服从正态分析,但是数据量过少等也可能影响结果导致很难呈现出标准的正态分布,如果是这种情况如果看见‘钟形’也可以接受的。比如:

上图可以看出,数据呈现的分布并不是很对称,但是也出现近似‘钟形’曲线,所以也可以勉强接受。

p-p/q-q图

p-p图和q-q图都是根据累计分布函数理论计算的,使用它们可以进行数据是何种分布的检验,但是常用于检验数据是否服从正态分布。如果图形中所有店都聚集在直线上,则说明变量分布服从于所要检验的分布,直观说法就是如果散点分布近似‘对角线’则可以认为正态分布。比如:


从上图可以看出散点分布近似‘对角线’则可以认为正态分布。q-q图也是如此。

几种方法说明

上述展示几种正态检验的方法,大体可以分为正态性检验,偏度与峰度以及图示化三种,其中正态性检验要求最为严格,但是从实用性角度,正态性检验远不如偏度与峰度以及图示化这俩种实用,有时常常会出现这样的结果,明明数据偏度绝对值小于3峰度绝对值小于10,或者p-p图呈现近似“对角线”的结果,但是正态性检验并不通过。此时建议不要对正态性检验过于依赖,因为正态性检验要求严格通常无法满足,所以在分析中可以使用其它两种方法辅助进行判断。

帐号已注销
2022-07-01 · TA获得超过33.9万个赞
知道小有建树答主
回答量:403
采纳率:0%
帮助的人:14.9万
展开全部

标准正态分布密度函数公式:

正态曲线呈钟型,两头低,中间高,左右对称因其曲线呈钟形,因此人们又经常称之为钟形曲线。

若随机变量X服从一个数学期望为μ、方差为σ^2的正态分布,记为N(μ,σ^2)。其概率密度函数为正态分布的期望值μ决定了其位置,其标准差σ决定了分布的幅度。当μ = 0,σ = 1时的正态分布是标准正态分布。

图形特征:

集中性:正态曲线的高峰位于正中央,即均数所在的位置。

对称性:正态曲线以均数为中心,左右对称,曲线两端永远不与横轴相交。

均匀变动性:正态曲线由均数所在处开始,分别向左右两侧逐渐均匀下降。

曲线与横轴间的面积总等于1,相当于概率密度函数的函数从正无穷到负无穷积分的概率为1。即频率的总和为100%。

扩展资料:

由于一般的正态总体其图像不一定关于y轴对称,对于任一正态总体,其取值小于x的概率。只要会用它求正态总体在某个特定区间的概率即可。

为了便于描述和应用,常将正态变量作数据转换。将一般正态分布转化成标准正态分布。 

若 服从标准正态分布,通过查标准正态分布表就可以直接计算出原正态分布的概率值。故该变换被称为标准化变换。

(标准正态分布表:标准正态分布表中列出了标准正态曲线下从-∞到X(当前值)范围内的面积比例。)

面积分布

1、实际工作中,正态曲线下横轴上一定区间的面积反映该区间的例数占总例数的百分比,或变量值落在该区间的概率(概率分布)。不同 范围内正态曲线下的面积可用公式计算。

2、正态曲线下,横轴区间(μ-σ,μ+σ)内的面积为68.268949%。

P{|X-μ|<σ}=2Φ(1)-1=0.6826

横轴区间(μ-1.96σ,μ+1.96σ)内的面积为95.449974%。

P{|X-μ|<2σ}=2Φ(2)-1=0.9544

横轴区间(μ-2.58σ,μ+2.58σ)内的面积为99.730020%。

P{|X-μ|<3σ}=2Φ(3)-1=0.9974

参考资料:百度百科——正态分布

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
Likea44
高能答主

2022-07-03 · 世界很大,慢慢探索
知道大有可为答主
回答量:1.4万
采纳率:91%
帮助的人:802万
展开全部
你好,很高兴为你解答:
正态分布最早由棣莫弗在求二项分布的渐近公式中得到。C.F.高斯在研究测量误差时从另一个角度导出了它。P.S.拉普拉斯和高斯研究了它的性质。是一个在数学、物理及工程等领域都非常重要的概率分布,在统计学的许多方面有着重大的影响力。

正态曲线呈钟型,两头低,中间高,左右对称因其曲线呈钟形,因此人们又经常称之为钟形曲线。

若随机变量X服从一个数学期望为μ、方差为σ2的正态分布,记为N(μ,σ²)。其概率密度函数为正态分布的期望值μ决定了其位置,其标准差σ决定了分布的幅度。当μ = 0,σ = 1时的正态分布是标准正态分布。
本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式