求微分方程y''=2yy'满足条件y(0)=1,y'(0)=1的解
1个回答
展开全部
y''=2yy'=(y^2)'
所以积分得到
y'=y^2+c1
就是
y'/(y^2+c1)=1
也就是
(√c1y')/(1+(y/√c1)^2)=√c1
就是
[arctan(y/√c1)]'=√c1
积分
arctan(y/√c1)=√c1*x+c2
y/√c1=tan(√c1*x+c2)
y=√c1tan(√c1*x+c2)
y(0)=1,y'(0)=1代入
c1,c2无解,是否条件有错误
其他两人的回答,验证一下就发现有错误的.
所以积分得到
y'=y^2+c1
就是
y'/(y^2+c1)=1
也就是
(√c1y')/(1+(y/√c1)^2)=√c1
就是
[arctan(y/√c1)]'=√c1
积分
arctan(y/√c1)=√c1*x+c2
y/√c1=tan(√c1*x+c2)
y=√c1tan(√c1*x+c2)
y(0)=1,y'(0)=1代入
c1,c2无解,是否条件有错误
其他两人的回答,验证一下就发现有错误的.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询