高中数学知识点总结:平面向量的线性运算
平面向量
1.向量的基本概念
(1)向量
既有大小又有方向的量叫做向量.物理学中又叫做矢量.如力、速度、加速度、位移就是向量.
向量可以用一条有向线段(带有方向的线段)来表示,用有向线段的长度表示向量的大小,用箭头所指的方向表示向量的方向.向量也可以用一个小写字母a,b,c表示,或用两个大写字母加表示(其中前面的字母为起点,后面的字母为终点)
(5)平行向量
方向相同或相反的非零向量,叫做平行向量.平行向量也叫做共线向量.
若向量a、b平行,记作a∥b.
规定:0与任一向量平行.
(6)相等向量
长度相等且方向相同的向量叫做相等向量.
①向量相等有两个要素:一是长度相等,二是方向相同,二者缺一不可.
②向量a,b相等记作a=b.
③零向量都相等.
④任何两个相等的非零向量,都可用同一有向线段表示,但特别要注意向量相等与有向线段的起点无关.
2.对于向量概念需注意
(1)向量是区别于数量的一种量,既有大小,又有方向,任意两个向量不能比较大小,只可以判断它们是否相等,但向量的模可以比较大小.
(2)向量共线与表示它们的有向线段共线不同.向量共线时,表示向量的有向线段可以是平行的,不一定在同一条直线上;而有向线段共线则是指线段必须在同一条直线上.
(3)由向量相等的定义可知,对于一个向量,只要不改变它的大小和方向,它是可以任意平行移动的,因此用有向线段表示向量时,可以任意选取有向线段的起点,由此也可得到:任意一组平行向量都可以平移到同一条直线上.
平面向量的线性运算