什么是实数?
- 01
实数是有理数和无理数的总称。数学上,实数定义为与数轴上的实数,点相对应的数,实数可以直观地看作有限小数与无限小数,实数和数轴上的点一一对应,但仅仅以列举的方式不能描述实数的整体。
实数可以分为有理数和无理数两类,或代数数和超越数两类。实数集通常用黑正体字母 R 表示。R表示n维实数空间。实数是不可数的。实数是实数理论的核心研究对象。
所有实数的集合则可称为实数系(real number system)或实数连续统。任何一个完备的阿基米德有序域均可称为实数系。在保序同构意义下它是惟一的,常用R表示。由于R是定义了算数运算的运算系统,故有实数系这个名称。
实数可以用来测量连续的量。理论上,任何实数都可以用无限小数的方式表示,小数点的右边是一个无穷的数列(可以是循环的,也可以是非循环的)。在实际运用中,实数经常被近似成一个有限小数(保留小数点后 n 位,n为正整数)。在计算机领域,由于计算机只能存储有限的小数位数,实数经常用浮点数来表示。
实数,就是:整数、小数,以及“带小数”的统称。
实数包括了:
整数(正整数、负整数、零);
小数(正的、负的、有限的、无限的、循环的、不循环的)。
带小数(含有整数部分和小数部分)
这些,都是小学学过的知识吧?
实数,就是“数轴上所有的点”上的数字。
--------------------------
虚数,是“实数与虚单位 i 的乘积”。
其中 i * i =-1。
由于 i 的存在,虚数就是“i 轴上所有的点”的数字。
--------------------------
复数,包括实部和虚部两个部分。
一般是以实轴为水平、i 轴为垂直,构成一个“复平面”。
复数就是:覆盖“复平面”上所有点的数字。