定积分∫1dx等于x+C(C为常数)。
∫dx
=∫1dx
=x+C(C为常数)
该函数不定积分,在微积分中,一个函数f 的不定积分,或原函数,或反导数,是一个导数等于f的函数F,即F = f。
不定积分和定积分间的关系由微积分基本定理确定,其中F是f的不定积分。
注意事项:
换元积分法是求积分的一种方法。它是由链式法则和微积分基本定理推导而来的。
在计算函数导数时.复合函数是最常用的法则,把它反过来求不定积分,就是引进中间变量作变量替换,把一个被积表达式变成另一个被积表达式。从而把原来的被积表达式变成较简易的不定积分这就是换元积分法。换元积分法有两种,第一类换元积分法和第二类换元积分法。