泰勒公式中,一阶导数怎么求?

 我来答
帐号已注销
高粉答主

2022-08-07 · 关注我不会让你失望
知道答主
回答量:84
采纳率:0%
帮助的人:3万
展开全部

如图:(注意“麦克劳林级数”是“泰勒级数”的特殊形式,是展开位置为0的泰勒级数)。

一阶导数,系数=1/(x+1)=1/(1+x0)。二阶导数,系数=-1/(1+x)^2=-1/(1+x0)^2

数学中,泰勒公式是一个用函数在某点的信息描述其附近取值的公式。如果函数足够平滑的话,在已知函数在某一点的各阶导数值的情况之下,泰勒公式可以用这些导数值做系数构建一个多项式来近似函数在这一点的邻域中的值。泰勒公式还给出了这个键返多项式和实际的函数值之间的偏差。

扩展资料

实际应用中,泰勒公式需要截断,只取有限项,一个函数的有限项的泰勒级数叫做泰勒展开式。泰勒公式的余项可慧亮携以用于估算这种近似的误差。

泰勒展开式的重要性体现在以下五个方面:

1、幂级数的求导和积分可以逐项进行,因此求和函数相对比较容易。

2、一个解析函数可被延伸为一个定义在复平面上的一个开片上的解析函数,并使得复分析这种手法可行。

3、泰勒级数可以用来近似计算函数的值,并估计误差。

4、证明不等式前伏。

5、求待定式的极限。

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式