三角形内角和定理的证明方法

 我来答
机器1718
2022-06-11 · TA获得超过6806个赞
知道小有建树答主
回答量:2805
采纳率:99%
帮助的人:158万
展开全部

三角形内角和定理是:三角形的内角和等于180°。接下来分享三角形内角和定理的证明方法,供参考。

三角形内角和定理证明方法

证法一:作BC的延长线CD,过点C作CE∥BA,则∠1=∠A,∠2=∠B,又∵∠1+∠2+∠ACB=180°∴∠A+∠B+∠ACB=180°

证法二:过点C作DE∥AB,则∠1=∠B,∠2=∠A,∵∠1+∠ACB+∠2=180°∴∠A+∠ACB+∠B=180°

证法三:在BC上任取一点D,作DE∥BA交AC于E,DF∥CA交AB于F,则有∠2=∠B,∠3=∠C,∠1=∠4,∠4=∠A。∴∠1=∠A。又∵∠1+∠2+∠3=180°∴∠A+∠B+∠C=180°

三角形内角和公式

任意n边形内角和公式

任意n边形的内角和公式为θ=180°·(n-2)。其中,θ是n边形内角和,n是该多边形的边数。从多边形的一个顶点连其他的顶点可以将此多边形分成(n-2)个三角形,每个三角形内角和为180°,故,任意n边形内角和的公式是:θ=(n-2)·180°,∀n=3,4,5,…。

三角形的五心

(1)重心:三条中线的交点,这点到顶点的距离是它到对边中点距离的2倍;重心分中线比为1:2;

(2)垂心:三角形的三条高线的交点叫做三角形的垂心。

(3)内心:三角形三条内角平分线的交点叫三角形的内心。即内切圆的圆心,到三边距离相等。

(4)外心:是指三角形三条边的垂直平分线也称中垂线的相交点。是三角形的外接圆的圆心的简称,到三顶点距离相等。

(5)旁心:一条内角平分线与其它二外角平分线的交点(共有三个),是三角形的旁切圆的圆心的简称。

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式