证明:lim(x,y)→(0,0)xy/x^2+y^2极限不存在 需要详细步骤啊

 我来答
优点教育17
2021-09-25 · TA获得超过7627个赞
知道大有可为答主
回答量:5800
采纳率:99%
帮助的人:298万
展开全部

当(x,y)→(0,0)

lim(x=0,y→0)[xy/x^2+y^2]=lim(y→0)f(0,y)=0

即(x,y)→(0,0)时limf(x,y)的值不同。所以:lim(x,y)→(0,0)xy/x^2+y^2极限不存在。

对于被考察的未知量,先设法正确地构思一个与它的变化有关的另外一个变量,确认此变量通过无限变化过程的’影响‘趋势性结果就是非常精密的约等于所求的未知量;用极限原理就可以计算得到被考察的未知量的结果。

解决问题的极限思想

极限思想方法,是数学分析乃至全部高等数学必不可少的一种重要方法,也是‘数学分析’与在‘初等数学’的基础上有承前启后连贯性的、进一步的思维的发展。

数学分析之所以能解决许多初等数学无法解决的问题(例如求瞬时速度、曲线弧长、曲边形面积、曲面体的体积等问题),正是由于其采用了‘极限’的‘无限逼近’的思想方法,才能够得到无比精确的计算答案。

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式