1个回答
展开全部
拉格朗日中值定理:f(b)-f(a)=f'(ζ)(b-a) ,ζ在a,b之间
用在这道题上:设f(x) = lnx,f'(x)=1/x
所以ln(1+x)-lnx = f(1+x) - f(x) = f'(ζ)(1 + x - x) = f'(ζ) = 1/ζ
(ζ在x和1 + x之间)
因为x>0(lnx的定义域决定)
所以 0 < x < ζ < 1+x
所以1/(1+x)< 1/ζ < 1/x
而由前面步骤ln(1+x)-lnx = 1/ζ
所以 1/(1+x)<ln(1+x)-lnx<1/x
用在这道题上:设f(x) = lnx,f'(x)=1/x
所以ln(1+x)-lnx = f(1+x) - f(x) = f'(ζ)(1 + x - x) = f'(ζ) = 1/ζ
(ζ在x和1 + x之间)
因为x>0(lnx的定义域决定)
所以 0 < x < ζ < 1+x
所以1/(1+x)< 1/ζ < 1/x
而由前面步骤ln(1+x)-lnx = 1/ζ
所以 1/(1+x)<ln(1+x)-lnx<1/x
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询