1-√cosx的等价无穷小是什么?

 我来答
Dilraba学长
高粉答主

2023-01-16 · 听从你心 爱你所爱 无问西东
Dilraba学长
采纳数:1107 获赞数:411055

向TA提问 私信TA
展开全部

1-√cosx的等价无穷小:x^2/4。

分析过程如下:

利用cosx=1-x^2/2+o(x^2) (1)以及

(1+x)^(1/2)=1+x/2+o(x) (2)得:

1-√cosx

=1-(1+cosx-1)^(1/2) 恒等变形

=1-(1+(cosx-1)/2)+o(cosx-1) 利用(2)式。

=(1-cosx)/2+o(x^2) 利用(1)式。

=x^2/4+o(x^2)

“极限”是数学中的分支——微积分的基础概念,广义的“极限”是指“无限靠近而永远不能到达”的意思。

数学中的“极限”指:某一个函数中的某一个变量,此变量在变大(或者变小)的永远变化的过程中,逐渐向某一个确定的数值A不断地逼近而“永远不能够重合到A”(“永远不能够等于A,但是取等于A‘已经足够取得高精度计算结果)的过程中,此变量的变化,被人为规定为“永远靠近而不停止”、其有一个“不断地极为靠近A点的趋势”。

扩展资料

用极限思想解决问题的一般步骤可概括为:

对于被考察的未知量,先设法正确地构思一个与它的变化有关的另外一个变量,确认此变量通过无限变化过程的’影响‘趋势性结果就是非常精密的约等于所求的未知量;用极限原理就可以计算得到被考察的未知量的结果。

极限思想是微积分的基本思想,是数学分析中的一系列重要概念,如函数的连续性、导数(为0得到极大值)以及定积分等等都是借助于极限来定义的。如果要问:“数学分析是一门什么学科?”那么可以概括地说:“数学分析就是用极限思想来研究函数的一门学科,并且计算结果误差小到难于想像,因此可以忽略不计。

小茗姐姐V
高粉答主

2023-01-17 · 关注我不会让你失望
知道大有可为答主
回答量:4.7万
采纳率:75%
帮助的人:6999万
展开全部

方法如下,请作参考:


若有帮助,
请采纳。

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式