在Rt三角形ABC中,CD垂直于AB,角BCD=2角ACD,垂足为点D 如果BD=3AD,求证:角C=90度
1个回答
展开全部
证明:作∠BCD的角平分线CE,交BD于点E
∴∠DCE=∠BCE
∵∠BCD=2∠ACD∴∠ACD=∠DCE
∵CD⊥AB ∴∠ADC=∠EDC=90°
∵CD=CD∴△ACD≌△ECD ∴AD=DE
∵BD=3AD∴BE=BD-DE=3AD-AD=2AD=2DE
∵CE平分∠BCD∴BC:CD=BE:DE=2:1(应用角平分线性质定理)
∴在Rt△BCD中:BC=2CD∴∠B=30°∴∠BCD=60°
∴∠ACD=1/2∠BCD=30°
∴∠ACB=∠ACD+∠BCD=90°
∴∠DCE=∠BCE
∵∠BCD=2∠ACD∴∠ACD=∠DCE
∵CD⊥AB ∴∠ADC=∠EDC=90°
∵CD=CD∴△ACD≌△ECD ∴AD=DE
∵BD=3AD∴BE=BD-DE=3AD-AD=2AD=2DE
∵CE平分∠BCD∴BC:CD=BE:DE=2:1(应用角平分线性质定理)
∴在Rt△BCD中:BC=2CD∴∠B=30°∴∠BCD=60°
∴∠ACD=1/2∠BCD=30°
∴∠ACB=∠ACD+∠BCD=90°
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询