在Rt三角形ABC中,CD垂直于AB,角BCD=2角ACD,垂足为点D 如果BD=3AD,求证:角C=90度

 我来答
华源网络
2022-08-06 · TA获得超过5595个赞
知道小有建树答主
回答量:2486
采纳率:100%
帮助的人:147万
展开全部
证明:作∠BCD的角平分线CE,交BD于点E
∴∠DCE=∠BCE
∵∠BCD=2∠ACD∴∠ACD=∠DCE
∵CD⊥AB ∴∠ADC=∠EDC=90°
∵CD=CD∴△ACD≌△ECD ∴AD=DE
∵BD=3AD∴BE=BD-DE=3AD-AD=2AD=2DE
∵CE平分∠BCD∴BC:CD=BE:DE=2:1(应用角平分线性质定理)
∴在Rt△BCD中:BC=2CD∴∠B=30°∴∠BCD=60°
∴∠ACD=1/2∠BCD=30°
∴∠ACB=∠ACD+∠BCD=90°
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式