在抛物线Y=4X的平方上求一点P,使P点到直线Y=4X-5的距离最短

 我来答
回从凡7561
2022-08-31 · TA获得超过801个赞
知道小有建树答主
回答量:297
采纳率:100%
帮助的人:54.5万
展开全部
设P横坐标是a,y=4x^2
所以纵坐标4a^2
所以P到4x-y-5=0距离=|4a-a^2-5|/根号(4^1+1^2)
=|a^2-4a+5|/根号17
距离最短则分子最小
|a^2-4a+5|=|(a-2)^2+1|
所以a=2时,分子最小,此时距离最短
4a^2=16
所以P(2,16)
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式