1+sinA+cosA除以sinA/2+cosA/2值
1个回答
展开全部
解:
1+sinA+cosA除以sinA/2+cosA/2
=(1+sinA+cosA)/(sinA/2+cosA/2)
={[sin(A/2)]^2+[cos(A/2)]^2+2sin(A/2)cos(A/2)+[cos(A/2)]^2-[sin(A/2)]^2}/(sinA/2+cosA/2)
={2[cos(A/2)]^2+2sin(A/2)cos(A/2)}/(sinA/2+cosA/2)
=2cos(A/2)[cos(A/2)+sin(A/2)]/(sinA/2+cosA/2)
=2cos(A/2)
谢谢
1+sinA+cosA除以sinA/2+cosA/2
=(1+sinA+cosA)/(sinA/2+cosA/2)
={[sin(A/2)]^2+[cos(A/2)]^2+2sin(A/2)cos(A/2)+[cos(A/2)]^2-[sin(A/2)]^2}/(sinA/2+cosA/2)
={2[cos(A/2)]^2+2sin(A/2)cos(A/2)}/(sinA/2+cosA/2)
=2cos(A/2)[cos(A/2)+sin(A/2)]/(sinA/2+cosA/2)
=2cos(A/2)
谢谢
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询