证明不等式的方法高数
1个回答
展开全部
比较法是证明不等式的最基本方法,具体有"作差"比较和"作商"比较两种。基本思想是把难于比较的式子变成其差与0比较大小或其商与1比较大小。当求证的不等式两端是分项式(或分式)时,常用作差比较,当求证的不等式两端是乘积形式(或幂指数式时常用作商比较)
扩展资料
1. 解:设函数f(x)=e^x,g(x)=x+1.
对于函数f(x)=e^x,为自然指数函数,定义域为全体实数,函数在定义域上为单调增函数,值域为:[0,+∞),图像示意图如下:
2. 对于函数g(x)=x+1,为一次函数,定义域和值域均为全体实数,在定义域范围内,函数为增函数,图像示意图如下
3.从图像可,函数g(x)=x+1在函数f(x)=e^x的`下方,二者有一个交点为(0,1),所以有:
f(x)>=g(x)
即:e^x>=x+1,成立。
首先是极限的定义,很少用但要知道,也可以用来求极限。两个重要法则,夹逼和单调有界定理,夹逼定理要正确选择“极限”是高等数学中一个极为重要的基本概念,无论是导数,还是定积分、广义积分、曲线的渐近线等概念无不建立在极限的基础上,极限是研究微积分的重要工具。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询