如何求解一阶线性常微分方程?

 我来答
百度网友00e012a

2022-12-09 · TA获得超过2784个赞
知道大有可为答主
回答量:2262
采纳率:60%
帮助的人:112万
展开全部

微分方程的解通常是一个函数表达式y=f(x),(含一个或多个待定常数,由初始条件确定)。

例如:dy/dx=sin x,其解为: y=-cos x+C,其中C是待定常数;

如果知道y=f(π)=2,则可推出C=1,而可知 y=-\cos x+1。

一阶线性常微分方程

对于一阶线性常微分方程,常用的方法是常数变易法:

对于方程:y'+p(x)y+q(x)=0,可知其通解:

然后将这个通解代回到原式中,即可求出C(x)的值。

扩展资料:

以下是常微分方程的一些例子,其中u为未知的函数,自变量为x,c及ω均为常数。

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式