如图,圆O的方程为x2+y2=4,
1个回答
展开全部
解题思路:(1)由已知中点A为周长等于3的圆周上的一个定点,我们求出劣弧AB长度小于1时,B点所在位置对应的弧长,然后代入几何概型公式,即可得到答案.
(2)根据题意可知是几何概型,只需求出点P到原点的距离大于1的圆环面积,然后利用面积比可求出所求.
(1)圆O的周长为4π,
∴弧
AB长小于π的概率[2π/4π=
1
2],
(2)记事件A为P到原点的距离大于1,则Ω(A)={(x,y)|x2+y2>1},
Ω={(x,y)|x2+y2≤4},
∴P(A)=[4π−π/4π=
3
4]
点评:
本题考点: 几何概型.
考点点评: 本题考查的知识点是几何概型,其中计算出所有事件和满足条件的事件对应的几何量的值是解答此类问题的关键.属基础题.
(2)根据题意可知是几何概型,只需求出点P到原点的距离大于1的圆环面积,然后利用面积比可求出所求.
(1)圆O的周长为4π,
∴弧
AB长小于π的概率[2π/4π=
1
2],
(2)记事件A为P到原点的距离大于1,则Ω(A)={(x,y)|x2+y2>1},
Ω={(x,y)|x2+y2≤4},
∴P(A)=[4π−π/4π=
3
4]
点评:
本题考点: 几何概型.
考点点评: 本题考查的知识点是几何概型,其中计算出所有事件和满足条件的事件对应的几何量的值是解答此类问题的关键.属基础题.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询