椭圆的参数方程怎么求?
如下图:
方法:
焦点弦,A(x1,y1),B(x2,y2),AB为椭圆的焦点弦,M(x,y)为AB中点,则L=2a±2ex;
设直线;与椭圆交于P1(x1,y1),P2(x2,y2),且P1P2斜率为k,则
平面内到定点F1、F2的距离之和等于常数(大于|F1F2|)的动点P的轨迹,F1、F2称为椭圆的两个焦点。其数学表达式为:|PF1|+|PF2|=2a(2a>|F1F2|)。
扩展资料
性质:
椭圆与其他两种形式的圆锥截面有很多相似之处:抛物线和双曲线,两者都是开放的和无界的。圆柱体的横截面为椭圆形,除非该截面平行于圆柱体的轴线。
椭圆也可以被定义为一组点,使得曲线上的每个点的距离与给定点(称为焦点)的距离与曲线上的相同点的距离的比值给定行是一个常数。该比率称为椭圆的偏心率。
椭圆上任意一点到F1,F2距离的和为2a,F1,F2之间的距离为2c。而公式中的b²=a²-c²。b是为了书写方便设定的参数。
又及:如果中心在原点,但焦点的位置不明确在X轴或Y轴时,方程可设为mx²+ny²=1(m>0,n>0,m≠n)。即标准方程的统一形式。
椭圆的面积是πab。椭圆可以看作圆在某方向上的拉伸,它的参数方程是:x=acosθ , y=bsinθ
标准形式的椭圆在(x0,y0)点的切线就是 :xx0/a²+yy0/b²=1。椭圆切线的斜率是:-b²x0/a²y0,这个可以通过复杂的代数计算得到。
2024-12-11 广告