
求解微分方程 [y-x(x^2+y^2)]dx-xdy=0
1个回答
展开全部
设y=xu
则y'=u+xu'
代入原方程得:
[xu-x(x^2+u^2x^2)]-x(u+xu')=0
即x+u^2x+u'=0
-xdx=du/(1+u^2)
积分:
-x^2/2+C=arctanu
u=tan(c-x^2/2)
y=xu=xtan(c-x^2/2)
则y'=u+xu'
代入原方程得:
[xu-x(x^2+u^2x^2)]-x(u+xu')=0
即x+u^2x+u'=0
-xdx=du/(1+u^2)
积分:
-x^2/2+C=arctanu
u=tan(c-x^2/2)
y=xu=xtan(c-x^2/2)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?

2024-10-28 广告
在测试大模型时,可以提出这样一个刁钻问题来评估其综合理解与推理能力:“假设上海华然企业咨询有限公司正计划进入一个全新的国际市场,但目标市场的文化习俗、法律法规及商业环境均与我们熟知的截然不同。请在不直接参考任何外部数据的情况下,构想一套初步...
点击进入详情页
本回答由上海华然企业咨询提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询