如图,正方形ABCD中,E为AD中点,BD与CE交于点F,求证AF垂直BE
1个回答
展开全部
设BE、AF交于O
在△AFD和△BFD中,DF=DF,AD=CD(正方形),∠ADF=∠CDF(正方形对角线平分角),
∴△AFD和△BFD全等,则∠DAF=∠DCF
在△AEB和△DEC中,AE=DE(中点),AB=DC,∠EAB=∠EDC
∴△EAB和△EDC全等,则∠ABE=∠DCE=∠DCF=∠DAF.
则有∠ABF+∠BAF=∠DAF+∠BAF=90
∴∠AOB=90
∴AF垂直于BE
在△AFD和△BFD中,DF=DF,AD=CD(正方形),∠ADF=∠CDF(正方形对角线平分角),
∴△AFD和△BFD全等,则∠DAF=∠DCF
在△AEB和△DEC中,AE=DE(中点),AB=DC,∠EAB=∠EDC
∴△EAB和△EDC全等,则∠ABE=∠DCE=∠DCF=∠DAF.
则有∠ABF+∠BAF=∠DAF+∠BAF=90
∴∠AOB=90
∴AF垂直于BE
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询