设a,b∈R,且a+b=3,求 2^a+2^b的最小值

 我来答
游戏王17
2022-08-08 · TA获得超过894个赞
知道小有建树答主
回答量:214
采纳率:0%
帮助的人:66.2万
展开全部
因为a+b=3,所以:b=3-a,代入得到:
2^a+2^b
=2^a+2^(3-a)
=2^a + 2^3/2^a 应用不等式a+b>=2√ab可得到:
2^a+2^b>=2√[2^a*(2^3/2^a)]=4√2;
取到等号的条件是:
2^a=2^3/2^a,即:a=3/2,在题目条件下,可以达到,所以最小值是4√2.
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式