dy/dx=1/(x+y) 求解微分方程

 我来答
大沈他次苹0B
2022-09-05 · TA获得超过7332个赞
知道大有可为答主
回答量:3059
采纳率:100%
帮助的人:179万
展开全部
令x+y=u,则y=u-x.
两边求导得:y'=u'-1 (y'=dy/dx,u'=du/dx)
带入原方程得:u'-1=1/u 所以u'=1+ 1/u=(u+1)/u
对u'=(u+1)/u=du/dx 进行分离变量,{u/(u+1)}du=dx
两边积分 u-ln|u+1|=x+c
以x+y=u带入上式得,y-ln|x+y+1|=c
则,ln|x+y+1|=c+y 化简得,x=c{e^y}-y-1
这是书上的例题~肯定没错~
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式