AC=BC,AD是角A的角平分线,角C=100度,求证:AB=AD+DC

 我来答
华源网络
2022-07-28 · TA获得超过5587个赞
知道小有建树答主
回答量:2486
采纳率:100%
帮助的人:146万
展开全部
在BC上截BE=BD,连结DE,并作DF//BC交AB于F,
AB=AC,
〈ABC=〈ACB=(180°-100°)/2=40°
BD是角B的角平分线,〈DBC=20°,
BD=BE,
〈DEB=(180°-20°)/2=80°,
〈DEC=180°-80°=100°,
〈EDC=180°-100°-40°=40°,
CE=DE,
对比△AFD和△EDC,
〈AFD=〈ABC=40°,(同位角相等),
同理〈ADF=〈ACB=40°,
〈FDB=〈DBC(内错角相等),
〈FBD=〈DBC(角平分线),
故〈FBD=〈FDB,
BF=FD,
而对梯形BCDF,〈FBC=〈DCB,
故是等腰梯形,
BF=CD,
则FD=CD,
△AFD≌△EDC(ASA),
CE=AD,
BC=BE+CE
BE=BD,CE=AD,
∴BC=BD+AD.
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式