如图,在▱ABCD中,对角线AC,BD相交于点O,且OA=OB.?
1个回答
展开全部
解题思路:(1)由▱ABCD得到OA=OC,OB=OD,由OA=OB,得到;OA=OB=OC=OD,对角线平分且相等的四边形是矩形,即可推出结论;
(2)根据矩形的性质借用勾股定理即可求得AB的长度.
(1)证明:在□ABCD中,
OA=OC=[1/2]AC,OB=OD=[1/2]BD,
又∵OA=OB,
∴AC=BD,
∴平行四边形ABCD是矩形.
(2)∵四边形ABCD是矩形,
∴∠BAD=90°,OA=OD.
又∵∠AOD=60°,
∴△AOD是等边三角形,
∴OD=AD=4,
∴BD=2OD=8,
在Rt△ABD中,AB=
BD2−AD2=
48=4
3.
,2,如图,在▱ABCD中,对角线AC,BD相交于点O,且OA=OB.
(1)求证:四边形ABCD是矩形;
(2)若AD=4,∠AOD=60°,求AB的长.
(2)根据矩形的性质借用勾股定理即可求得AB的长度.
(1)证明:在□ABCD中,
OA=OC=[1/2]AC,OB=OD=[1/2]BD,
又∵OA=OB,
∴AC=BD,
∴平行四边形ABCD是矩形.
(2)∵四边形ABCD是矩形,
∴∠BAD=90°,OA=OD.
又∵∠AOD=60°,
∴△AOD是等边三角形,
∴OD=AD=4,
∴BD=2OD=8,
在Rt△ABD中,AB=
BD2−AD2=
48=4
3.
,2,如图,在▱ABCD中,对角线AC,BD相交于点O,且OA=OB.
(1)求证:四边形ABCD是矩形;
(2)若AD=4,∠AOD=60°,求AB的长.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询