请问等价无穷小的具体求法是什么?
1个回答
展开全部
具体回答如下:
im(x~0)(tanx-x)/x^k
=lim(x~0)[(secx)^2-1]/kx^(k-1)
=lim(x~0)(tanx)^2/kx^(k-1)
~lim(x~0)x^(3-k)/k
=A为一个常数
所以3-k=0
k=3
所以等价无穷小为x^3
扩展资料:
等价无穷小是无穷小之间的一种关系,在同一自变量的趋向过程中,若两个无穷小之比的极限为1,则称这两个无穷小是等价的,无穷小等价关系刻画的是两个无穷小趋向于零的速度是相等的。
求极限时,使用等价无穷小的条件:
1、被代换的量,在取极限的时候极限值为0。
2、被代换的量,作为被乘或者被除的元素时可以用等价无穷小代换,但是作为加减的元素时就不可以。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询