请问等价无穷小的具体求法是什么?

 我来答
教育小百科达人
2023-01-16 · TA获得超过156万个赞
知道大有可为答主
回答量:8828
采纳率:99%
帮助的人:467万
展开全部

具体回答如下:

im(x~0)(tanx-x)/x^k

=lim(x~0)[(secx)^2-1]/kx^(k-1)

=lim(x~0)(tanx)^2/kx^(k-1)

~lim(x~0)x^(3-k)/k

=A为一个常数

所以3-k=0

k=3

所以等价无穷小为x^3

扩展资料:

等价无穷小是无穷小之间的一种关系,在同一自变量的趋向过程中,若两个无穷小之比的极限为1,则称这两个无穷小是等价的,无穷小等价关系刻画的是两个无穷小趋向于零的速度是相等的。

求极限时,使用等价无穷小的条件:

1、被代换的量,在取极限的时候极限值为0。

2、被代换的量,作为被乘或者被除的元素时可以用等价无穷小代换,但是作为加减的元素时就不可以。

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式