已知等差数列(an)满足:a3=7、a5+a7=26、求前n项和Sn
展开全部
令an=a1+(n-1)d
a3=a1+2d=7
a5=a1+4d a7=a1+6d
那么a5+a7=2a1+10d=26
然后你解这两个方程就可以得到a1和d
再代入公式就可以得sn
a3=a1+2d=7
a5=a1+4d a7=a1+6d
那么a5+a7=2a1+10d=26
然后你解这两个方程就可以得到a1和d
再代入公式就可以得sn
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
a3=a1+2d=7
a5+a7=2a1+10d=26 a1+5d=13
得到方程组:
a1+2d=7
a1+5d=13
解得a1=3 d=2
所以Sn=3n+n*(n-1)=2n+n^2
a5+a7=2a1+10d=26 a1+5d=13
得到方程组:
a1+2d=7
a1+5d=13
解得a1=3 d=2
所以Sn=3n+n*(n-1)=2n+n^2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
因为是等差,且a5+a7=26,
所以2a6=26,
a6=13,
又a6=a3+3d
所以a3+a6=20=a3+a3+3d=7+7+3d
得d=2
所以a1=a3-2d=7-4=3
则sn=a1*n+n(n-1)d/2=n*n+2n
所以2a6=26,
a6=13,
又a6=a3+3d
所以a3+a6=20=a3+a3+3d=7+7+3d
得d=2
所以a1=a3-2d=7-4=3
则sn=a1*n+n(n-1)d/2=n*n+2n
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询