什么是解析几何?
2个回答
展开全部
解析几何(英语:Analytic geometry),又称为坐标几何(英语:Coordinate geometry)或卡氏几何(英语:Cartesian geometry),早先被叫作笛卡儿几何,是一种借助于解析式进行图形研究的几何学分支。解析几何通常使用二维的平面直角坐标系研究直线、圆、圆锥曲线、摆线、星形线等各种一般平面曲线,使用三维的空间直角坐标系来研究平面、球等各种一般空间曲面,同时研究它们的方程,并定义一些图形的概念和参数。
在中学课本中,解析几何被简单地解释为:采用数值的方法来定义几何形状,并从中提取数值的信息。然而,这种数值的输出可能是一个方程或者是一种几何形状。
1637年,笛卡儿在《方法论》的附录“几何”中提出了解析几何的基本方法。以哲学观点写成的这部法语著作为后来牛顿和莱布尼茨各自提出微积分学提供了基础。
对代数几何学者来说,解析几何也指(实或者复)流形,或者更广义地通过一些复变数(或实变量)的解析函数为零而定义的解析空间理论。这一理论非常接近代数几何,特别是通过让-皮埃尔·塞尔在《代数几何和解析几何》领域的工作。这是一个比代数几何更大的领域,不过也可以使用类似的方法
在中学课本中,解析几何被简单地解释为:采用数值的方法来定义几何形状,并从中提取数值的信息。然而,这种数值的输出可能是一个方程或者是一种几何形状。
1637年,笛卡儿在《方法论》的附录“几何”中提出了解析几何的基本方法。以哲学观点写成的这部法语著作为后来牛顿和莱布尼茨各自提出微积分学提供了基础。
对代数几何学者来说,解析几何也指(实或者复)流形,或者更广义地通过一些复变数(或实变量)的解析函数为零而定义的解析空间理论。这一理论非常接近代数几何,特别是通过让-皮埃尔·塞尔在《代数几何和解析几何》领域的工作。这是一个比代数几何更大的领域,不过也可以使用类似的方法
展开全部
解析几何诞生于17世纪的法国,数学家笛卡儿和费马通过把坐标系引入几何中,将几何的基本元素——点,与代数的基本研究对象——数对应起来,从而将几何问题转化为代数问题。解析几何学的产生可以说是数学发展史上的一次飞跃。它为17世纪数学最重要的成就之一——微积分的创立奠定了基础;解析几何把变量引入数学,因此完成或者简化了其他学科中一些定理的证明;同时,通过对图形方程的建立和研究将几何图形更好的应用到我们的生活中。
公元前146年,罗马人征服了希腊本土。公元前47年,凯撒纵火焚毁停泊在亚历山大港的埃及船队,大火延及该城,并无情地将图书馆两个半世纪以来收集的藏书毁于一炬。罗马统治者推崇的基督教的传播,迅速地以强烈的宗教狂热淹没了丰富的科学想象,使希腊数学蒙受了更大的灾难。查封学园,禁止学习研究数学,使欧洲数学进入了漫长的黑暗时期。15世纪,随着拜占庭帝国的瓦解,难民们带着包括古希腊文化在内的财富逃亡到意大利,从15世纪中期到16世纪末,这段时期在欧洲称为文艺复兴时期。在这一时期,欧洲开始出现了思想大解放、生产大发展、社会大进步,包括数学在内的科学文化开始复苏并繁荣起来。到17世纪,从封建社会内部产生出来的资本主义生产关系,处于它的上升时期,促进了社会生产力的迅速发展,远洋航行、矿山开采、机械制造以及资本的对外扩张,向自然科学提出了大量的问题,例如天体运行、钟表摆动、炮弹弹道、透镜形状等,所有这些,都已超出欧几里得几何学的范围。费马和笛卡儿创立的解析几何学解决了以上问题,解析几何是代数与几何相结合的产物,通过把坐标系引入几何中,将几何的“形”与代数的“数”对应起来,从而将几何问题转化为代数问题,它把变量引入数学,使得人们借助数学对运动变化规律进行定量分析成为可能。美国著名数学史家莫里斯·克莱茵指出:“只要代数同几何分道扬镳,它们的进展就缓慢,它们的应用就狭窄。但是当这两门科学结合成伴侣时,它们就相互吸取新鲜的活力,从那以后,就以快速的步伐走向完善。”17世纪上半叶,数学家们已经积累了微积分的大量知识和方法,解析几何的出现为微积分的创立奠定了基础。正如恩格斯所说:“数学中的转折点是笛卡儿的变数;有了变数,运动进入了数学;有了变数,辩证法进入了数学;有了变数,微分和积分也就立刻成为必要的了。”
在解析几何中,我们可以通过构造向量完成一些定理的证明,或者简化一些定理证明过程。
利用空间解析几何中的数量积、向量积以及混合积运算,对一个向量与三个不共面向量的分解式进行混合积运算,之后在空间右手直角坐标系下应用混合积的坐标表示,代入四个向量的坐标以后可以证明线性代数中解线性方程组的重要定理——克莱姆法则。
通过数量积的定义和空间直角坐标系下数量积的坐标表示式可以证明数学分析中的重要不等式——柯西—施瓦茨不等式;还可以利用双重向量积的计算公式证明数学分析中的两个重要等式——拉格朗日恒等式和雅可比恒等式。
在三角形中构造向量以后,可以运用数量积的定义和运算律证明三角学中的余弦定理,还可以利用向量积模的定义证明三角学中的另一定理——正弦定理。
公元前146年,罗马人征服了希腊本土。公元前47年,凯撒纵火焚毁停泊在亚历山大港的埃及船队,大火延及该城,并无情地将图书馆两个半世纪以来收集的藏书毁于一炬。罗马统治者推崇的基督教的传播,迅速地以强烈的宗教狂热淹没了丰富的科学想象,使希腊数学蒙受了更大的灾难。查封学园,禁止学习研究数学,使欧洲数学进入了漫长的黑暗时期。15世纪,随着拜占庭帝国的瓦解,难民们带着包括古希腊文化在内的财富逃亡到意大利,从15世纪中期到16世纪末,这段时期在欧洲称为文艺复兴时期。在这一时期,欧洲开始出现了思想大解放、生产大发展、社会大进步,包括数学在内的科学文化开始复苏并繁荣起来。到17世纪,从封建社会内部产生出来的资本主义生产关系,处于它的上升时期,促进了社会生产力的迅速发展,远洋航行、矿山开采、机械制造以及资本的对外扩张,向自然科学提出了大量的问题,例如天体运行、钟表摆动、炮弹弹道、透镜形状等,所有这些,都已超出欧几里得几何学的范围。费马和笛卡儿创立的解析几何学解决了以上问题,解析几何是代数与几何相结合的产物,通过把坐标系引入几何中,将几何的“形”与代数的“数”对应起来,从而将几何问题转化为代数问题,它把变量引入数学,使得人们借助数学对运动变化规律进行定量分析成为可能。美国著名数学史家莫里斯·克莱茵指出:“只要代数同几何分道扬镳,它们的进展就缓慢,它们的应用就狭窄。但是当这两门科学结合成伴侣时,它们就相互吸取新鲜的活力,从那以后,就以快速的步伐走向完善。”17世纪上半叶,数学家们已经积累了微积分的大量知识和方法,解析几何的出现为微积分的创立奠定了基础。正如恩格斯所说:“数学中的转折点是笛卡儿的变数;有了变数,运动进入了数学;有了变数,辩证法进入了数学;有了变数,微分和积分也就立刻成为必要的了。”
在解析几何中,我们可以通过构造向量完成一些定理的证明,或者简化一些定理证明过程。
利用空间解析几何中的数量积、向量积以及混合积运算,对一个向量与三个不共面向量的分解式进行混合积运算,之后在空间右手直角坐标系下应用混合积的坐标表示,代入四个向量的坐标以后可以证明线性代数中解线性方程组的重要定理——克莱姆法则。
通过数量积的定义和空间直角坐标系下数量积的坐标表示式可以证明数学分析中的重要不等式——柯西—施瓦茨不等式;还可以利用双重向量积的计算公式证明数学分析中的两个重要等式——拉格朗日恒等式和雅可比恒等式。
在三角形中构造向量以后,可以运用数量积的定义和运算律证明三角学中的余弦定理,还可以利用向量积模的定义证明三角学中的另一定理——正弦定理。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询