什么是微分?
1个回答
展开全部
在数学中,微分是对函数的局部变化率的一种线性描述。微分可以近似地描述当函数自变量的取值作足够小的改变时,函数的值是怎样改变的。
高数里的定义是当dx靠近自己时,函数在dx处的极限,叫作函数在dx处的微分。y=f(x)的微分又可记作dy=f'(x)dx。即函数因变量的微分与自变量的微分之商等于该函数的导数,实际上就理解微分是导数再乘以dx即可。
通常把自变量x的增量 Δx称为自变量的微分,记作dx,即dx = Δx。于是函数y = f(x)的微分又可记作dy = f'(x)dx。函数的微分与自变量的微分之商等于该函数的导数。因此,导数也叫做微商。
当自变量X改变为X+△X时,相应地函数值由f(X)改变为f(X+△X),如果存在一个与△X无关的常数A,使f(X+△X)-f(X)和A·△X之差是△X→0关于△X的高阶无穷小量,则称A·△X是f(X)在X的微分,记为dy,并称f(X)在X可微。
微分概念是在解决直与曲的矛盾中产生的,在微小局部可以用直线去微分近似替代曲线。微分具有双重意义:它表示一个微小的量,因此就可以把线性函数的数值计算结果作为本来函数的数值近似值,这就是运用微分方法进行近似计算的基本思想。
富港检测技术(东莞)有限公司_
2024-04-02 广告
2024-04-02 广告
一、积分概念是由求某些面积、体积和弧长引起的,古希腊数学家阿基米德在《抛物线求积法》中用究竭法求出抛物线弓形的面积,人没有用极限,是 “ 有限 ” 开工的穷竭法。但阿基米德的贡献真正成为积分学的萌芽。 微分是联系到对曲线作切线的问题和函数的...
点击进入详情页
本回答由富港检测技术(东莞)有限公司_提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询