简述神经网络的分类,试列举常用神经的类型。

 我来答
魏小婴wxy
2023-03-27 · TA获得超过190个赞
知道小有建树答主
回答量:2217
采纳率:99%
帮助的人:27.8万
展开全部

神经网络是一种通用机器学习模型,是一套特定的算法集,在机器学习领域掀起了一场变革,本身就是普通函数的逼近,可以应用到任何机器学习输入到输出的复杂映射问题。

一般来说,神经网络架构可分为3类:

1、前馈神经网络:是最常见的类型,第一层为输入,最后一层为输出。如果有多个隐藏层,则称为“深度”神经网络。它能够计算出一系列事件间相似转变的变化,每层神经元的活动是下一层的非线性函数。

2、循环神经网络:各节点之间构成循环图,可以按照箭头的方向回到初始点。循环神经网络具有复杂的动态,难以训练,它模拟连续数据,相当于每个时间片段具有一个隐藏层的深度网络,除了在每个时间片段上使用相同的权重,也有输入。网络可以记住隐藏状态的信息,但是很难用这点来训练网络。

3、对称连接网络:和循环神经网络一样,但单元间的连接是对称的(即在两个方向的连接权重相同),它比循环神经网络更容易分析,但是功能受限。没有隐藏单元的对称连接的网络被称为“Hopfiels网络”,有隐藏单元的对称连接的网络则被称为“波兹曼机器”。

按照训练方式分类,常见的神经网络类型包括:

  • 监督学习(Supervised Learning):使用有标记的数据集进行训练,输出结果与实际值进行比较来计算误差。

  • 无监督学习(Unsupervised Learning):使用没有标记的数据集进行训练,目的是发现数据之间的潜在关系。

  • 强化学习(Reinforcement Learning):通过奖惩机制进行学习,训练模型执行正确的动作以达到最大化预期奖励的目标。

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式