如果a能被b整除那么a是b的什么b是a的什么
如果a能被b整除,(b≠0),那么a是b的倍数,b是a的因数。
一个整数能够被另一个整数整除,这个整数就是另一整数的倍数。一个数除以另一数所得的商。一个数的倍数有无数个,也就是说一个数的倍数的集合为无限集。注意:不能把一个数单独叫做倍数,只能说谁是谁的倍数。
两个或多个整数公有的倍数叫做它们的公倍数。两个或多个整数的公倍数里最小的那一个叫做它们的最小公倍数。
因数是指整数a除以整数b(b≠0)的商正好是整数而没有余数,我们就说b是a的因数。在小学数学里,两个正整数相乘,那么这两个数都叫做积的因数,或称为约数。
小学数学定义:假如a×b=c(a、b、c都是整数),那么我们称a和b就是c的因数。需要注意的是,唯有被除数,除数,商皆为整数,余数为零时,此关系才成立。反过来说,我们称c为a、b的倍数。在研究因数和倍数时,小学数学不考虑0。
事实上因数一般定义在整数上:设A为整数,B为非零整数,若存在整数Q,使得A=QB,则称B是A的因数,记作B|A。但是也有的作者不要求B≠0。一般而言,整数A乘以整数B得到整数C,整数A与整数B都称作整数C的因数,反之,整数C为整数A的倍数,也为整数B的倍数。
基数理论的概念:
基数理论则把自然数定义为有限集的基数,这种理论提出,两个可以在元素之间建立一一对应关系的有限集具有共同的数量特征,这一特征叫做基数。这样,所有单元素集{x},{y},{a},{b}等具有同一基数,记作1。
类似,凡能与两个手指头建立一一对应的集合,它们的基数相同,记作2,等等。自然数的加法、乘法运算可以在序数或基数理论中给出定义,并且两种理论下的运算是一致的。
自然数在日常生活中起了很大的作用,人们广泛使用自然数。自然数是人类历史上最早出现的数,自然数在计数和测量中有着广泛的应用。人们还常常用自然数来给事物标号或排序,如城市的公共汽车路线,门牌号码,邮政编码等。