反对称矩阵有什么性质
1个回答
展开全部
反对称矩阵的性质如下:
设A为n维方阵,若有A'=-A,则称矩阵A为反对称矩阵。对于反对称矩阵,它的主对角线上的元素全为零,而位于主对角线两侧对称的元素反号。反对称矩阵具有很多良好的性质,如若A为反对称矩阵,则A',λA均为反对称矩阵;
若A,B均为反对称矩阵,则A±B也为反对称矩阵;设A为反对称矩阵,B为对称矩阵,则AB-BA为对称矩阵;奇数阶反对称矩阵的行列式必为0。反对称矩阵的特征值是0或纯虚数,并且对应于纯虚数的特征向量的实部和虚部形成的实向量等长且互相正交。
矩阵,数学术语。在数学中,矩阵(Matrix)是一个按照长方阵列排列的复数或实数集合 ,最早来自于方程组的系数及常数所构成的方阵。这一概念由19世纪英国数学家凯利首先提出。
矩阵是高等代数学中的常见工具,也常见于统计分析等应用数学学科中。 在物理学中,矩阵于电路学、力学、光学和量子物理中都有应用;计算机科学中,三维动画制作也需要用到矩阵。 矩阵的运算是数值分析领域的重要问题。将矩阵分解为简单矩阵的组合可以在理论和实际应用上简化矩阵的运算。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询