全概率和贝叶斯公式
展开全部
全概率和贝叶斯公式: P(A) = P(A)P(B1|A)+P(A)P(B2|A)+...+P(A)P(B5|A)
1、全概率公式为概率论中的重要公式,它将对一复杂事件A的概率求解问题转化为了在不同情况下发生的简单事件的概率的求和问题。
内容:如果事件B1、B2、B3…Bn 构成一个完备事件组,即它们两两互不相容,其和为全集;并且P(Bi)大于0,则对任一事件A有P(A)=P(A|B1)P(B1) + P(A|B2)P(B2) + ... + P(A|Bn)P(Bn)。
2、贝叶斯定理是关于随机事件A和B的条件概率(或边缘概率)的一则定理。其中P(A|B)是在B发生的情况下A发生的可能性。已知它们的概率P(H[i]),i=1,2,…,n,现观察到某事件A与H[1],H[2]…,H[n]相伴随机出现,且已知条件概率P(A|H[i]),求P(H[i]|A)。
概率论的一个重要内容是研究怎样从一些较简单事件概率的计算来推算较复杂事件的概率,全概率公式和Bayes公式正好起到了这样的作用。而计算各个B的概率与条件概率P(A/Bi)相对又要容易些,这是为了计算与事件A有关的概率,可能需要使用全概率公式和Bayes公式。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询