点和直线的位置关系
点和直线的位置关系呈现是一个什么关系,下面由我为你精心准备了“点和直线的位置关系”,持续关注本站将可以持续获取更多的考试资讯!
点和直线的位置关系
1.直线与点的位置关系有两种,分别是
①点在直线外 ②点在直线上
2.直线的公理有3种,分别是
①经过两点有且只有一条直线。
②两点之间,线段最短。
③在同一平面内,经过直线外或直线上的一点,有且只有一条直线与已知直线垂直。
拓展资料:点直线平面之间的位置关系知识点
1、平面
(1)平面概念的理解
直观的理解:桌面、黑板面、平静的水面等等都给人以平面的直观的印象,但它们都不是平面,而仅仅是平面的一部分。
抽象的理解:平面是平的,平面是无限延展的,平面没有厚薄。
(2)平面的表示法
①图形表示法:通常用平行四边形来表示平面,有时根据实际需要,也用其他的平面图形来表示平面。
②字母表示:常用等希腊字母表示平面。
(3)涉及本部分内容的符号表示有:
①点A在直线l内,记作;②点A不在直线l内,记作;
③点A在平面内,记作;④点A不在平面内,记作;
⑤直线l在平面内,记作;⑥直线l不在平面内,记作;
注意:符号的使用与集合中这四个符号的使用的区别与联系。
(4)平面的基本性质
公理1:如果一条直线的两个点在一个平面内,那么这条直线上的所有点都在这个平面内。
符号表示为:.
注意:如果直线上所有的`点都在一个平面内,我们也说这条直线在这个平面内,或者称平面经过这条直线。
公理2:过不在一条直线上的三点,有且只有一个平面。
符号表示为:直线AB存在唯一的平面,使得。
注意:有且只有的含义是:有表示存在,只有表示唯一,不能用只有来代替此公理又可表示为:不共线的三点确定一个平面。
公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线。
符号表示为:.
注意:两个平面有一条公共直线,我们说这两个平面相交,这条公共直线就叫作两个平面的交线若平面、平面相交于直线l,记作。
公理的推论:
推论1:经过一条直线和直线外的一点有且只有一个平面。
推论2:经过两条相交直线有且只有一个平面。
推论3:经过两条平行直线有且只有一个平面。
2.空间直线
(1)空间两条直线的位置关系
①相交直线:有且仅有一个公共点,可表示为;
②平行直线:在同一个平面内,没有公共点,可表示为a//b;
③异面直线:不同在任何一个平面内,没有公共点。
(2)平行直线
公理4:平行于同一条直线的两条直线互相平行。
符号表示为:设a、b、c是三条直线。
定理:如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角相等。
(3)两条异面直线所成的角
注意:①两条异面直线a,b所成的角的范围是(0,90]。
②两条异面直线所成的角与点O的选择位置无关,这可由前面所讲过的等角定理直接得出。
③由两条异面直线所成的角的定义可得出异面直线所成角的一般方法:
(i)在空间任取一点,这个点通常是线段的中点或端点。
(ii)分别作两条异面直线的平行线,这个过程通常采用平移的方法来实现。
(iii)指出哪一个角为两条异面直线所成的角,这时我们要注意两条异面直线所成的角的范围。
3.空间直线与平面
直线与平面位置关系有且只有三种:
(1)直线在平面内:有无数个公共点;
(2)直线与平面相交:有且只有一个公共点;
(3)直线与平面平行:没有公共点。
4.平面与平面
两个平面之间的位置关系有且只有以下两种:
(1)两个平面平行:没有公共点;
(2)两个平面相交:有一条公共直线。