常用函数的傅里叶变换公式表
常用函数的傅里叶变换公式表如下:
1、门函数F(w)=2w w sin=Sa() w。
2、指数函数(单边)f(t)=e-atu(t) F(w)=1,实际上是一个低通滤波器a+jw。
3、单位冲激函数F(w)=1,频带无限宽,是一个均匀谱。
4、常数1 常数1是一个直流信号,所以它的频谱当然只有在w=0的时候才有值,体现为(w)。F(w)=2(w) 可以由傅里叶变换的对称性得到。
5、正弦函数F(ejw0t)=2(w-w0),相当于是直流信号的移位。F(sinw0t)=F((ejw0t-e-jw0t)/2)=((w-w0)-(w+w0))F(sinw0t)=F((e。
6、单位冲击序列jw0t-e-jw0t)/2j)=j((w-w0)-(w+w0)) T(t)=(t-Tn) -这是一个周期函数,每隔T出现一个冲击,周期函数的傅里叶变换是离散的F(T(t))=w0(w-nw0)=w0,w0(w) n=-单位冲击序列的傅里叶变换仍然是周期序列,周期是w0=2T。
傅立叶变换:
傅立叶变换是指将满足一定条件的某个函数表示成三角函数的积分。傅立叶变换是在对傅立叶级数的研究中产生的。在不同的研究领域,傅立叶变换具有不同的作用。
在分析信号的时候 主要考虑的频率、幅值、相位。
傅里叶变换的作用主要是将函数转化成多个正弦组合(或e指数)的形式,本质上变换之后信号还是原来的信号只是换了一种表达方式 这样可以更直观的分析一个函数里的频率、幅值、相位成分。