两位数乘以两位数的速算方法有几种?
一、“头同,尾和10”算法分析
1、速算要领
“头同,尾和10”算法口诀:头加1乘头,两尾乘积接后头(不足两位十补0)。是指个位数字之和是10,十位数字相同的两个两位数相乘时,则用第一个两位数十位上的数字加1,乘以第二个两个位数十位上的数字,其乘积构成该两个两位数乘积结果的前两位;而两数个位数字的乘积,则构成该两个两位数乘积的后两位(如果个位数的乘积不满10,则在其乘积结果前补0形成两位),再把两个乘积所形成的两个两位数顺序排列,就形成了“头同,尾合10”两位数的乘积结果。
2、算法分析
依据速算口诀,将其转化为科学计数法表示为:有(10a+b)与(10a+d)两个两位数相乘,且b+d=10,求证:(10a+b)×(10a+d)=100a(a+1)+b·d。
证明:根据代数式(10a+b)×(10a+d)运算可得:
(10a+b)×(10a+d)=10a×10a+10ad+10ab+bd=10a×(10a+b+d)+bd
又∵b+d=10
∴10a(10a+b+d)+b·d=10a(10a+10)+b·d=10a×10(a+1)+b·d
故证:(10a+b)×(10a+d)=100a(a+1)+b·d
对结果的形象表述,即是这一算法的基本口诀:AB和AD两个两位数相乘,且B+D=10。其结果为四位数EFGH,其中EF=A·(A+1),GH=B·D。
二、“尾同,头和10”算法分析
1、速算要领
“尾同,头和10”算法口诀:头乘头加尾,两尾乘积接后头(两尾乘积不足10时在十位上补0)。是指两个两位数相乘时,如果两数的个位数字相同,而十位数字之和是10,则以两个两位数十位上的数字相乘后加上任一两位数的个位之和,构成该两位数乘积结果的前两位;而用两位乘数个位上的乘积(如不满两位则在十位补0),则组成该两位数乘积结果的后两位,再把两个乘积所形成的两个两位数顺序排列就形成了“尾同,头合10”两位数的乘积结果。
2、算法分析
依据速算口诀,将其转化为科学计数法则为:有(10b+a)与(10d+a)两个两位数,且b+d=10,求证:(10b+a)×(10d+a)=100(b·d+a)+a·a。
证明:根据代数式(10b+a)×(10d+a)运算可得:
(10b+a)×(10d+a)=10b×10d+10b×a+a×10d+a·a=10b·10d+10a(b+d)+a·a
又∵b+d=10
∴10b·10d+10a(b+d)+a·a=100b·d+100a+a·a=100×(b·d+a)+a·a
对结果的形象表述,正是这一算法的基本口诀:BA和DA两个两位数相乘,且B+D=10。其结果为四位数EFGH,其中EF=B·D+A,GH=A·A。