如何判断一个级数是收敛还是发散?
证明:
当p>1时,p-级数前2^k向的部分和
S(p)=1+1/2^p+1/3^p+……+1/[(2^k)^p] =1+[1/2^p+1/3^p]+[1/4^p+1/5^p+1/6^p+1/7^p]+……+{1/[2^(k-1)]^p+1/[2^(k-1)+1]^p+……+1/(2^k-1)^p}+1/[(2^k)^p]
(p)有亏键界
而对于任意n,存在k,使n≤2^k,从而S<[2^(p-1)]/[2^(p-1)-1]
所以P级数收敛
扩展资料
性质:
关于函数f(x)在点x0处的收敛定义。对于销渗巧任意实数b>0,存在c>0,对任意x1,x2满足0<|x1-x0|<c,0<|x2-x0|<c,有|f(x1)-f(x2)|<b。
如果给定一个定义在区间i上的函数列,u1(x), u2(x) ,u3(x)......至un(x)....... 则由这函数列构成的表达式u1(x)+u2(x)+u3(x)+......+un(x)+......⑴称为定义在区间i上的(函数项)无穷级数,简称(函数项)级数
对于每一个确定的值X0∈I,函数项级数 ⑴ 成为常数项级数u1(x0)+u2(x0)+u3(x0)+......+un(x0)+.... (2) 这个级数可能收敛也可能发散。如果级数(2)发散,就称点x0是函数项级数(1)的发散点。
函数项级数(1)的收敛点的全体称为他的收敛域 ,发散点的全体称为他的发散域 对应于收敛域内任意一个数x,函数项级数称为一收敛的常数项 级数 ,因而有一确定的和s。
这样,在收敛域上 ,函数项级数的和是x的函数S(x),通常称s(x)为函数项级数的和函数,这函数的定义域就是级数的收敛域,并写成S(x)=u1(x)喊中+u2(x)+u3(x)+......+un(x)+......把函数项级数 ⑴ 的前n项部分和 记作Sn(x),则在收敛域上有lim n→∞Sn(x)=S(x)
记rn(x)=S(x)-Sn(x),rn(x)叫作函数级数项的余项 (当然,只有x在收敛域上rn(x)才有意义,并有lim n→∞rn (x)=0。
2021-11-22 广告