一阶线性微分方程dy/ dx+ P( x) y= Q( x)的通解

 我来答
heanmeng
2023-06-25 · TA获得超过6750个赞
知道大有可为答主
回答量:3651
采纳率:94%
帮助的人:1508万
展开全部
一阶线性微分方程dy/dx+P(x)y=Q(x)的通解公式应用“常数变易法”求解。
解:∵由齐次方程dy/dx+P(x)y=0
==>dy/dx=-P(x)y
==>dy/y=-P(x)dx
==>ln│y│=-∫P(x)dx+ln│C│ (C是积分常数)
==>y=Ce^(-∫P(x)dx)
∴此齐次方程的通解是y=Ce^(-∫P(x)dx)
于是,根据常数变易法,设一阶线性微分方程dy/dx+P(x)y=Q(x)的解为
y=C(x)e^(-∫P(x)dx) (C(x)是关于x的函数)
代入dy/dx+P(x)y=Q(x),化简整理得
C'(x)e^(-∫P(x)dx)=Q(x)
==>C'(x)=Q(x)e^(∫P(x)dx)
==>C(x)=∫Q(x)e^(∫P(x)dx)dx+C (C是积分常数)
==>y=C(x)e^(-∫P(x)dx)=[∫Q(x)e^(∫P(x)dx)dx+C]e^(-∫P(x)dx)
故一阶线性微分方程dy/dx+P(x)y=Q(x)的通解公式是
y=[∫Q(x)e^(∫P(x)dx)dx+C]e^(-∫P(x)dx) (C是积分常数)。
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式