求1/ x的展开的幂级数,怎么求?

 我来答
百度网友a60ac64
2023-06-24 · TA获得超过4616个赞
知道小有建树答主
回答量:49
采纳率:100%
帮助的人:7863
展开全部

1/(1-x)²=【1/(1-x)】’

=(∞∑n²·xⁿ)'

=∞∑n1·nx^n-1

其他类似题型参考

1、求x/(1-x^2)展开为x的幂级数

f(x)=x/(1-x^2)
=x/(1-x)(1+x)
=(1/2)*[1/(1-x) - 1/(1+x)]

因为1/(1-x)=∑(n=0,∞) x^n,x∈(-1,1)

1/(1+x)=∑(n=0,∞) (-x)^n,x∈(-1,1)
所以
f(x)=(1/2)*∑(n=0,∞) [1-(-1)^n] x^n,x∈(-1,1)
写得再清楚一点,就是:
f(x)=x+x^3+x^5+……=∑(n=0,∞) x^(2n+1),x∈(-1,1)

其实,如果细心一点观察,就可以发现:
x/(1-x^2)=lim(n→∞) x(1-0)/(1-x^2)
=lim(n→∞) x(1-(x^2)^n)/(1-x^2)
这正是首项为x,公比为x^2的等比级数的收敛函数~~~
因此,直接可推:f(x)=x+x^3+x^5+……=∑(n=0,∞) x^(2n+1),x∈(-1,1)

2、求x/(1+x^2)展开为x的幂级数

f(x)=x/(1+^2)
f(x)/x=1/(1+x^2)
同取积分:
∫(0,x) f(t)/t dt =∫(0,x) 1/(1+t^2) dt
=arctanx
=∑(n=0,∞) (-1)^n * 1/(2n+1) * x^(2n+1)
然后,同对x求导
f(x)/x=[∑(n=0,∞) (-1)^n * 1/(2n+1) * x^(2n+1)]'
=∑(n=0,∞) [(-1)^n * 1/(2n+1) * x^(2n+1)]'
=∑(n=0,∞) (-1)^n * x^(2n)
因此,
f(x)=∑(n=0,∞) (-1)^n * x^(2n+1),x∈(-1,1)

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式