arcsinx的导数

 我来答
独立团云少49
2023-04-30 · TA获得超过442个赞
知道小有建树答主
回答量:296
采纳率:100%
帮助的人:72.3万
展开全部

∫arcsinxdx等于xarcsinx+根号(1-x^2) +C。

∫ arcsinx dx

=xarcsinx-∫ x darcsinx

=xarcsinx-∫ x/根号(1-x^2) dx

=xarcsinx+根号(1-x^2) +C

所以∫arcsinxdx等于xarcsinx+根号(1-x^2) +C。

扩展资料:

1、分部积分法的形式

(1)通过对u(x)求微分后,du=u'dx中的u'比u更加简洁。

例:∫x^2*e^xdx=∫x^2de^x=x^2*e^x-∫e^xdx^2=x^2*e^x-∫2x*e^xdx

例:∫xarctanxdx=∫arctanxd(1/2x^2)

=1/2x^2*arctanx-1/2∫x^2darctanx=1/2x^2*arctanx-1/2∫x^2/(1+x^2)dx

(2)利用有些函数经一次或二次求微分后不变的性质来进行分部积分。

2、不定积分公式

∫mdx=mx+C、∫cosxdx=sinx+C、∫sinxdx=-cosx+C、∫e^xdx=e^x+C



推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式