2个回答
展开全部
x²+y²-2x+4y=0 ====>(x-1)²+(y+2)²=5为圆的方程
设k=x-2y ====>y=(-1/2)*(x-k)=(-1/2)x+(1/2)*k====>x-2y-k=0
又因为若实数x,y满足条件:x²+y²-2x+4y=0
即直线上的点要至少有一个在圆上,那最远的即k的最大值就是直线与圆相切时,根据点(1,-2)到直线的距离公式为
|1*1+(-2)*(-2)-k|/√(1²+2²)=√5====>k=10或k=0
所以x-2y的最大值为10
设k=x-2y ====>y=(-1/2)*(x-k)=(-1/2)x+(1/2)*k====>x-2y-k=0
又因为若实数x,y满足条件:x²+y²-2x+4y=0
即直线上的点要至少有一个在圆上,那最远的即k的最大值就是直线与圆相切时,根据点(1,-2)到直线的距离公式为
|1*1+(-2)*(-2)-k|/√(1²+2²)=√5====>k=10或k=0
所以x-2y的最大值为10
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询