opencv sift 怎么用
1个回答
展开全部
OPENCV下SIFT特征点提取与匹配的大致流程如下:
读取图片-》特征点检测(位置,角度,层)-》特征点描述的提取(16*8维的特征向量)-》匹配-》显示
其中,特征点提取主要有两个步骤,见上行黄子部分。下面做具体分析。
1、使用opencv内置的库读取两幅图片
2、生成一个SiftFeatureDetector的对象,这个对象顾名思义就是SIFT特征的探测器,用它来探测衣服图片中SIFT点的特征,存到一个KeyPoint类型的vector中。这里有必要说keypoint的数据结构,涉及内容较多,具体分析查看opencv中keypoint数据结构分析,里面讲的自认为讲的还算详细(表打我……)。简而言之最重要的一点在于:
keypoint只是保存了opencv的sift库检测到的特征点的一些基本信息,但sift所提取出来的特征向量其实不是在这个里面,特征向量通过SiftDescriptorExtractor 提取,结果放在一个Mat的数据结构中。这个数据结构才真正保存了该特征点所对应的特征向量。具体见后文对SiftDescriptorExtractor 所生成的对象的详解。
就因为这点没有理解明白耽误了一上午的时间。哭死!
3、对图像所有KEYPOINT提取其特征向量:
得到keypoint只是达到了关键点的位置,方向等信息,并无该特征点的特征向量,要想提取得到特征向量就还要进行SiftDescriptorExtractor
的工作,建立了SiftDescriptorExtractor
对象后,通过该对象,对之前SIFT产生的特征点进行遍历,找到该特征点所对应的128维特征向量。具体方法参见opencv中SiftDescriptorExtractor所做的SIFT特征向量提取工作简单分析。通过这一步后,所有keypoint关键点的特征向量被保存到了一个MAT的数据结构中,作为特征。
4、对两幅图的特征向量进行匹配,得到匹配值。
两幅图片的特征向量被提取出来后,我们就可以使用BruteForceMatcher对象对两幅图片的descriptor进行匹配,得到匹配的结果到matches中。
至此,SIFT从特征点的探测到最后的匹配都已经完成,虽然匹配部分不甚了解,只扫对于如何使用OPENCV进行sift特征的提取有了一定的理解。接下来可以开始进行下一步的工作了。
附:使用OPENCV下SIFT库做图像匹配的例程
// opencv_empty_proj.cpp : 定义控制台应用程序的入口点。
//
#include "stdafx.h"
#include <opencv2/opencv.hpp>
#include <opencv2/features2d/features2d.hpp>
#include<opencv2/nonfree/nonfree.hpp>
#include<opencv2/legacy/legacy.hpp>
#include<vector>
using namespace std;
using namespace cv;
int _tmain(int argc, _TCHAR* argv[])
{
const char* imagename = "img.jpg";
//从文件中读入图像
Mat img = imread(imagename);
Mat img2=imread("img2.jpg");
//如果读入图像失败
if(img.empty())
{
fprintf(stderr, "Can not load image %s\n", imagename);
return -1;
}
if(img2.empty())
{
fprintf(stderr, "Can not load image %s\n", imagename);
return -1;
}
//显示图像
imshow("image before", img);
imshow("image2 before",img2);
//sift特征检测
SiftFeatureDetector siftdtc;
vector<KeyPoint>kp1,kp2;
siftdtc.detect(img,kp1);
Mat outimg1;
drawKeypoints(img,kp1,outimg1);
imshow("image1 keypoints",outimg1);
KeyPoint kp;
vector<KeyPoint>::iterator itvc;
for(itvc=kp1.begin();itvc!=kp1.end();itvc++)
{
cout<<"angle:"<<itvc->angle<<"\t"<<itvc->class_id<<"\t"<<itvc->octave<<"\t"<<itvc->pt<<"\t"<<itvc->response<<endl;
}
siftdtc.detect(img2,kp2);
Mat outimg2;
drawKeypoints(img2,kp2,outimg2);
imshow("image2 keypoints",outimg2);
SiftDescriptorExtractor extractor;
Mat descriptor1,descriptor2;
BruteForceMatcher<L2<float>> matcher;
vector<DMatch> matches;
Mat img_matches;
extractor.compute(img,kp1,descriptor1);
extractor.compute(img2,kp2,descriptor2);
imshow("desc",descriptor1);
cout<<endl<<descriptor1<<endl;
matcher.match(descriptor1,descriptor2,matches);
drawMatches(img,kp1,img2,kp2,matches,img_matches);
imshow("matches",img_matches);
//此函数等待按键,按键盘任意键就返回
waitKey();
return 0;
}
读取图片-》特征点检测(位置,角度,层)-》特征点描述的提取(16*8维的特征向量)-》匹配-》显示
其中,特征点提取主要有两个步骤,见上行黄子部分。下面做具体分析。
1、使用opencv内置的库读取两幅图片
2、生成一个SiftFeatureDetector的对象,这个对象顾名思义就是SIFT特征的探测器,用它来探测衣服图片中SIFT点的特征,存到一个KeyPoint类型的vector中。这里有必要说keypoint的数据结构,涉及内容较多,具体分析查看opencv中keypoint数据结构分析,里面讲的自认为讲的还算详细(表打我……)。简而言之最重要的一点在于:
keypoint只是保存了opencv的sift库检测到的特征点的一些基本信息,但sift所提取出来的特征向量其实不是在这个里面,特征向量通过SiftDescriptorExtractor 提取,结果放在一个Mat的数据结构中。这个数据结构才真正保存了该特征点所对应的特征向量。具体见后文对SiftDescriptorExtractor 所生成的对象的详解。
就因为这点没有理解明白耽误了一上午的时间。哭死!
3、对图像所有KEYPOINT提取其特征向量:
得到keypoint只是达到了关键点的位置,方向等信息,并无该特征点的特征向量,要想提取得到特征向量就还要进行SiftDescriptorExtractor
的工作,建立了SiftDescriptorExtractor
对象后,通过该对象,对之前SIFT产生的特征点进行遍历,找到该特征点所对应的128维特征向量。具体方法参见opencv中SiftDescriptorExtractor所做的SIFT特征向量提取工作简单分析。通过这一步后,所有keypoint关键点的特征向量被保存到了一个MAT的数据结构中,作为特征。
4、对两幅图的特征向量进行匹配,得到匹配值。
两幅图片的特征向量被提取出来后,我们就可以使用BruteForceMatcher对象对两幅图片的descriptor进行匹配,得到匹配的结果到matches中。
至此,SIFT从特征点的探测到最后的匹配都已经完成,虽然匹配部分不甚了解,只扫对于如何使用OPENCV进行sift特征的提取有了一定的理解。接下来可以开始进行下一步的工作了。
附:使用OPENCV下SIFT库做图像匹配的例程
// opencv_empty_proj.cpp : 定义控制台应用程序的入口点。
//
#include "stdafx.h"
#include <opencv2/opencv.hpp>
#include <opencv2/features2d/features2d.hpp>
#include<opencv2/nonfree/nonfree.hpp>
#include<opencv2/legacy/legacy.hpp>
#include<vector>
using namespace std;
using namespace cv;
int _tmain(int argc, _TCHAR* argv[])
{
const char* imagename = "img.jpg";
//从文件中读入图像
Mat img = imread(imagename);
Mat img2=imread("img2.jpg");
//如果读入图像失败
if(img.empty())
{
fprintf(stderr, "Can not load image %s\n", imagename);
return -1;
}
if(img2.empty())
{
fprintf(stderr, "Can not load image %s\n", imagename);
return -1;
}
//显示图像
imshow("image before", img);
imshow("image2 before",img2);
//sift特征检测
SiftFeatureDetector siftdtc;
vector<KeyPoint>kp1,kp2;
siftdtc.detect(img,kp1);
Mat outimg1;
drawKeypoints(img,kp1,outimg1);
imshow("image1 keypoints",outimg1);
KeyPoint kp;
vector<KeyPoint>::iterator itvc;
for(itvc=kp1.begin();itvc!=kp1.end();itvc++)
{
cout<<"angle:"<<itvc->angle<<"\t"<<itvc->class_id<<"\t"<<itvc->octave<<"\t"<<itvc->pt<<"\t"<<itvc->response<<endl;
}
siftdtc.detect(img2,kp2);
Mat outimg2;
drawKeypoints(img2,kp2,outimg2);
imshow("image2 keypoints",outimg2);
SiftDescriptorExtractor extractor;
Mat descriptor1,descriptor2;
BruteForceMatcher<L2<float>> matcher;
vector<DMatch> matches;
Mat img_matches;
extractor.compute(img,kp1,descriptor1);
extractor.compute(img2,kp2,descriptor2);
imshow("desc",descriptor1);
cout<<endl<<descriptor1<<endl;
matcher.match(descriptor1,descriptor2,matches);
drawMatches(img,kp1,img2,kp2,matches,img_matches);
imshow("matches",img_matches);
//此函数等待按键,按键盘任意键就返回
waitKey();
return 0;
}
东莞大凡
2024-08-07 广告
2024-08-07 广告
OpenCV标定板是东莞市大凡光学科技有限公司在相机标定中常用的工具。它通常由黑白格点按一定规则排列在平面上组成,如棋盘格或圆形格等。在相机标定时,将标定板置于不同位置和姿态下拍摄图像,利用OpenCV库中的函数检测标定板上的角点或圆心,进...
点击进入详情页
本回答由东莞大凡提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询