设二次函数f(x)=x2+px+q,集合A={x| f(x)=x,x∈R},集合B={x| f(x-1)=x+1,x∈R},当A={2}时,求集合B。
1个回答
展开全部
由已知,方程x^2+px+q=x只有一个解是2。
所以判别式=0且把2带进去等式成立。
也就是(p-1)^2=4q且4+2p+q=2。
所以(p-1)^2=4*(-2-2p)
所以p^2-2p+1=-8-8p
所以p^2+6p+9=0
所以(p+3)^2=0
所以p=-3
所以q=4
所以f(x)=x^2-3x+4
那么B集合就是这个方程的解集:(x-1)^2-3(x-1)+4=x+1
也就是x^-2x+1-3x+3+4-x-1=0
也就是x^2-6x+7=0
所以x^2-6x+9=2
所以(x-3)^2=2
所以x=3±根号2
所以B={3+根号2,3-根号2}
所以判别式=0且把2带进去等式成立。
也就是(p-1)^2=4q且4+2p+q=2。
所以(p-1)^2=4*(-2-2p)
所以p^2-2p+1=-8-8p
所以p^2+6p+9=0
所以(p+3)^2=0
所以p=-3
所以q=4
所以f(x)=x^2-3x+4
那么B集合就是这个方程的解集:(x-1)^2-3(x-1)+4=x+1
也就是x^-2x+1-3x+3+4-x-1=0
也就是x^2-6x+7=0
所以x^2-6x+9=2
所以(x-3)^2=2
所以x=3±根号2
所以B={3+根号2,3-根号2}
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询