![](https://iknow-base.cdn.bcebos.com/lxb/notice.png)
已知偶函数烦f(x)在区间【0,正无穷)上单调递增,则满足f(2x-1)《f(1/3)的x取值范围是多少?
1个回答
展开全部
偶函数则有f(x)=f(|x|)
f(2x-1)<=f(1/3)
即f(|2x-1|)<=f(1/3)
f(x)在区间【0,正无穷)上单调递增
故|2x-1|<=1/3
-1/3<=2x-1<=1/3
2/3<=2x<=4/3
即1/3<=x<=2/3
f(2x-1)<=f(1/3)
即f(|2x-1|)<=f(1/3)
f(x)在区间【0,正无穷)上单调递增
故|2x-1|<=1/3
-1/3<=2x-1<=1/3
2/3<=2x<=4/3
即1/3<=x<=2/3
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询