
有向量a,b,|a|=4,|b|=5,a与b的夹角为π/3,求|a-b|及|a+b|
展开全部
|a-b|^2
= (a-b). (a-b)
=|a|^2 + |b|^2 - 2a.b
=16+25 - 2|a||b| cos(π/3)
=41-2(4)(5)1/2
=41-20
=21
so |a-b|= √21 #
Similarly
|a+b|^2 = (a+b). (a+b)
= 61
|a+b| = √61 #
= (a-b). (a-b)
=|a|^2 + |b|^2 - 2a.b
=16+25 - 2|a||b| cos(π/3)
=41-2(4)(5)1/2
=41-20
=21
so |a-b|= √21 #
Similarly
|a+b|^2 = (a+b). (a+b)
= 61
|a+b| = √61 #
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询