![](https://iknow-base.cdn.bcebos.com/lxb/notice.png)
设三角形ABC的内角A,B,C所对的边长分别为a,b,c,且acosB-bcosA=4c/5,则tanA/tanB多少
展开全部
a/c=sinA/sinC,b/c=sinB/sinC,
acosB/c-bcosA/c=4/5,
sinAcosB/sinC-sinBcosA/sinC=4/5,
(sinacosB-sinBcosA)/(sinacosB-sinBcosA)=4/5,
(tanA-tanB)/(tanA+tanB)=4/5,同除以tanB
tanA/tanB=9.
acosB/c-bcosA/c=4/5,
sinAcosB/sinC-sinBcosA/sinC=4/5,
(sinacosB-sinBcosA)/(sinacosB-sinBcosA)=4/5,
(tanA-tanB)/(tanA+tanB)=4/5,同除以tanB
tanA/tanB=9.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询